您的位置: 网站首页> Pandas教程> 当前文章
DataFrame的[],loc,iloc多条件判断筛选(布尔索引的本质)
老董-我爱我家房产SEO2021-10-25156围观,115赞
pandas中DataFrame选择数据可以用直接索引、loc选择器、iloc选择器,这些筛选方式都支持布尔索引,他们可以直接传入True、False组成的列表,也可以传入Series、df、np数组,只要他们的值为布尔值即可。这个就是布尔索引的本质。详细用法如下:
>>dateframe iloc行列选择,切片,条件筛选大全
在多条件判断中,&代表且,|代表或,~代表取反。如果2个条件运算需要加上小括号确定优先级。布尔索引是实际工作使用非常频繁的操作,本文实操利用布尔索引进行单条件多条件判断。
1、单条件与非判断
df = pd.DataFrame([['baidu',800,200],['sogou',500,150],['google',100,60]],columns=['pingtai','pv','uv'],index=['a','b','c']) bool_con1 = df['pv'] > 200 print(df[bool_con1]) print('====') print(df[~bool_con1]) # 取反
pingtai pv uv a baidu 800 200 b sogou 500 150 ==== pingtai pv uv c google 100 60
2、多条件与判断
df = pd.DataFrame([['baidu',800,200],['sogou',600,100],['google',500,120]],columns=['pingtai','pv','uv'],index=['a','b','c']) bool_con1 = df['pv'] > 500 print(df[bool_con1]) print('====') bool_con2 = df['uv'] > 100 print(df[bool_con2]) print('-----') print(df[bool_con2 & bool_con1])
pingtai pv uv a baidu 800 200 b sogou 600 100 ==== pingtai pv uv a baidu 800 200 c google 500 120 ----- pingtai pv uv a baidu 800 200
3、多条件或判断
df = pd.DataFrame([['baidu',800,200],['sogou',600,100],['google',500,120]],columns=['pingtai','pv','uv'],index=['a','b','c']) bool_con1 = df['pv'] > 500 print(df[bool_con1]) print('====') bool_con2 = df['uv'] > 100 print(df[bool_con2]) print('-----') print(df[bool_con2 | bool_con1])
pingtai pv uv a baidu 800 200 b sogou 600 100 ==== pingtai pv uv a baidu 800 200 c google 500 120 ----- pingtai pv uv a baidu 800 200 b sogou 600 100 c google 500 120
4、条件很多可以加括号确定优先级
df = pd.DataFrame([['baidu',800,200],['sogou',600,100],['google',500,120]],columns=['pingtai','pv','uv'],index=['a','b','c']) bool_con1 = df['pv'] > 500 print(df[bool_con1]) print('====') bool_con2 = df['uv'] > 100 print(df[bool_con2]) print('=====') bool_con3 = df['pingtai'] == 'baidu' print(df[bool_con3]) print('-----') print(df[(bool_con2 | bool_con1) & bool_con3])
pingtai pv uv a baidu 800 200 b sogou 600 100 ==== pingtai pv uv a baidu 800 200 c google 500 120 ===== pingtai pv uv a baidu 800 200 ----- pingtai pv uv a baidu 800 200
本文就此结束,感谢IT人士的关注DataFrame的[],loc,iloc多条件判断筛选(布尔索引的本质),本文合作企业直达:更多推荐。
很赞哦!
python编程网提示:转载请注明来源www.python66.com。
有宝贵意见可添加站长微信(底部),获取技术资料请到公众号(底部)。同行交流请加群
相关文章
文章评论
-
DataFrame的[],loc,iloc多条件判断筛选(布尔索引的本质)文章写得不错,值得赞赏