您的位置: 网站首页> Pandas教程> 当前文章

DataFrame的iloc位置索引,切片,布尔索引筛选单多行多列

老董-我爱我家房产SEO2021-10-25153围观,143赞

  pandas中DataFrame选择数据可以用iloc选择器,注意iloc不是函数。iloc用于位置索引筛选,也可以用于布尔值筛选。

  官方介绍如下:

  Purely integer-location based indexing for selection by position。.iloc[] is primarily integer position based (from 0 to length-1 of the axis), but may also be used with a boolean array.

  我们按照这个df为例来进行学习。


df = pd.DataFrame([['baidu','800','200'],['sogou','500','100'],['google','100','60']],columns=['pingtai','pv','uv'],index=['a','b','c'])
print(df)
  pingtai   pv   uv
a   baidu  800  200
b   sogou  500  100
c  google  100   60

  1、iloc位置索引选择单行,返回Series或者DataFrame


df = pd.DataFrame([['baidu','800','200'],['sogou','500','100'],['google','100','60']],columns=['pingtai','pv','uv'],index=['a','b','c'])
print(df.iloc[0])
print('===')
print(df.iloc[[0]])
pingtai    baidu
pv           800
uv           200
Name: a, dtype: object
===
  pingtai   pv   uv
a   baidu  800  200

  2、iloc位置索引选择多行及所有列,返回DataFrame


df = pd.DataFrame([['baidu','800','200'],['sogou','500','100'],['google','100','60']],columns=['pingtai','pv','uv'],index=['a','b','c'])
print(df.iloc[[0,1]])
  pingtai   pv   uv
a   baidu  800  200
b   sogou  500  100

  3、iloc位置索引选择多行多列,返回DataFrame


df = pd.DataFrame([['baidu','800','200'],['sogou','500','100'],['google','100','60']],columns=['pingtai','pv','uv'],index=['a','b','c'])
print(df.iloc[[0,1],[1,2]])
    pv   uv
a  800  200
b  500  100

  4、iloc位置切片索引(末端不包含)选择多行及所有列,返回DataFrame


df = pd.DataFrame([['baidu','800','200'],['sogou','500','100'],['google','100','60']],columns=['pingtai','pv','uv'],index=['a','b','c'])
print(df.iloc[[0,1],:])
  pingtai   pv   uv
a   baidu  800  200
b   sogou  500  100

  5、iloc位置切片索引(末端不包含)选择多行多列,返回DataFrame


df = pd.DataFrame([['baidu','800','200'],['sogou','500','100'],['google','100','60']],columns=['pingtai','pv','uv'],index=['a','b','c'])
print(df.iloc[0:2,0:2])
  pingtai   pv
a   baidu  800
b   sogou  500

  6、iloc布尔索引(末端不包含)选择多行多列,返回DataFrame


df = pd.DataFrame([['baidu','800','200'],['sogou','500','100'],['google','100','60']],columns=['pingtai','pv','uv'],index=['a','b','c'])
print(df.iloc[[True,True,True],[False,True,True]])
    pv   uv
a  800  200
b  500  100
c  100   60

  本文就此结束,感谢IT人士的关注DataFrame的iloc位置索引,切片,布尔索引筛选单多行多列,本文合作企业直达:更多推荐

很赞哦!

python编程网提示:转载请注明来源www.python66.com。
有宝贵意见可添加站长微信(底部),获取技术资料请到公众号(底部)。同行交流请加群 python学习会

文章评论

    DataFrame的iloc位置索引,切片,布尔索引筛选单多行多列文章写得不错,值得赞赏

站点信息

  • 网站程序:Laravel
  • 客服微信:a772483200