您的位置: 网站首页> Pandas教程> 当前文章
pandas获取及删除某一级索引、多层变为单层索引
老董-我爱我家房产SEO2022-08-14169围观,150赞
pandas创建多重索引后,如果想要得到某一层的索引,则需要通过get_level_values获得。如果想要删除某个层级的索引则可以使用
get_level_values(level=)函数可以接受int或者str类型,int代表索引层级,0代表最外层;str则代表索引的name属性值。鄙人经过测试该函数不能直接获取二维列索引某个层级的值!
# ‐*‐ coding: utf‐8 ‐*‐ import pandas as pd import numpy as np df = pd.DataFrame({"name": ["baidu", "baidu", "baidu", "baidu", "baidu", "google", "google", "google", "google"], "duankou": ["pc", "pc", "pc", "wap", "wap", "pc", "pc", "wap", "wap"], "ispass": ['ok','no', 'ok','no','ok','no','ok','no','ok',], "value": [2, 4, 5, 5, 6, 6, 8, 9, 9]}) table = pd.pivot_table(df, values=['value'], index=['name', 'duankou'],columns = ['ispass'],aggfunc=np.sum) print(table) print('--------------') print(table.index.names) index1 = table.index.get_level_values(level=0) # 外层 index2 = table.index.get_level_values(level='duankou') # 内层 print(index1) print(index2) print(table.columns.names) # 会报错Level ispass not found # colindex = table.index.get_level_values(level='ispass')
value ispass no ok name duankou baidu pc 4 7 wap 5 6 google pc 6 8 wap 9 9 -------------- ['name', 'duankou'] Index(['baidu', 'baidu', 'google', 'google'], dtype='object', name='name') Index(['pc', 'wap', 'pc', 'wap'], dtype='object', name='duankou') [None, 'ispass']
droplevel(level=0)函数可以删除某个层级的索引,默认level=0代表最外层行索引。level可以接受int, str, 或者list-like,如果事字符串,则代表索引的名称。如果是列表,则就是多个索引的名称;droplevel()函数也可以借助axis参数来删除删除列索引。
# ‐*‐ coding: utf‐8 ‐*‐ # ‐*‐ coding: utf‐8 ‐*‐ import pandas as pd import numpy as np df = pd.DataFrame({"name": ["baidu", "baidu", "baidu", "baidu", "baidu", "google", "google", "google", "google"], "duankou": ["pc", "pc", "pc", "wap", "wap", "pc", "pc", "wap", "wap"], "ispass": ['ok','no', 'ok','no','ok','no','ok','no','ok',], "value": [2, 4, 5, 5, 6, 6, 8, 9, 9]}) table = pd.pivot_table(df, values=['value'], index=['name', 'duankou'],columns = ['ispass'],aggfunc=np.sum) print(table) print('--------------') df1 = table.droplevel(level=0) print(df1) print('===============') df2 = table.droplevel(level='ispass',axis=1) # 删除列索引 print(df2)
value ispass no ok name duankou baidu pc 4 7 wap 5 6 google pc 6 8 wap 9 9 -------------- value ispass no ok duankou pc 4 7 wap 5 6 pc 6 8 wap 9 9 =============== value value name duankou baidu pc 4 7 wap 5 6 google pc 6 8 wap 9 9
本文就此结束,感谢IT人士的关注pandas获取及删除某一级索引、多层变为单层索引,本文合作企业直达:更多推荐。
很赞哦!
python编程网提示:转载请注明来源www.python66.com。
有宝贵意见可添加站长微信(底部),获取技术资料请到公众号(底部)。同行交流请加群
下一篇:没有了
相关文章
文章评论
-
pandas获取及删除某一级索引、多层变为单层索引文章写得不错,值得赞赏