您的位置: 网站首页> Pandas教程> 当前文章

pandas创建多重索引的7种方法

老董-我爱我家房产SEO2022-08-14155围观,127赞

  pandas创建多重索引有很多方式,老董在使用过程中一共总结了7种类方式,本文为大家总结1下。

  1、pd.MultiIndex.from_arrays():

  可以直接传入二维列表作为参数。

# ‐*‐ coding: utf‐8 ‐*‐
import pandas as pd

arrays = [['baidu', 'baidu', 'sogou', 'sogou'], ['pc', 'wap', 'pc', 'wap',]]
index=  pd.MultiIndex.from_arrays(arrays, names=('name', 'pingtai'))
print(index)
df = pd.DataFrame([[1,2,3,4],[5,6,7,8],[11,22,33,44],[55,66,77,88]],index=index)
print(df)
MultiIndex([('baidu',  'pc'),
            ('baidu', 'wap'),
            ('sogou',  'pc'),
            ('sogou', 'wap')],
           names=['name', 'pingtai'])
                0   1   2   3
name  pingtai                
baidu pc        1   2   3   4
      wap       5   6   7   8
sogou pc       11  22  33  44
      wap      55  66  77  88

# ‐*‐ coding: utf‐8 ‐*‐
import pandas as pd

arrays = [['baidu', 'baidu', 'sogou', 'sogou'], ['pc', 'wap', 'pc', 'wap',]]
index=  pd.MultiIndex.from_arrays(arrays, names=('name', 'pingtai'))
print(index)
df = pd.DataFrame([[1,2,3,4]],columns=index)
print(df)
MultiIndex([('baidu',  'pc'),
            ('baidu', 'wap'),
            ('sogou',  'pc'),
            ('sogou', 'wap')],
           names=['name', 'pingtai'])
name    baidu     sogou    
pingtai    pc wap    pc wap
0           1   2     3   4

  2、pd.MultiIndex.from_tuples():

  可以直接传入元组组成的的列表作为参数。

# ‐*‐ coding: utf‐8 ‐*‐
import pandas as pd

tuples = [('baidu', 'pc'), ('baidu', 'wap'),
          ('sogou', 'pc'), ('sogou', 'wap')]
index=  pd.MultiIndex.from_tuples(tuples, names=('name', 'pingtai'))

df1 = pd.DataFrame([[1,2,3,4],[5,6,7,8],[11,22,33,44],[55,66,77,88]],index=index)
df2 = pd.DataFrame([[1,2,3,4]],columns=index)
# 自己输出验证把

  3、pd.MultiIndex.from_product():

  可迭代对象组成的列表作为参数,列表内每个可迭代对象的元素的笛卡尔积创建索引。

# ‐*‐ coding: utf‐8 ‐*‐
import pandas as pd

tuples = [['baidu', 'sogou'], ['pc', 'wap']]
index=  pd.MultiIndex.from_product(tuples, names=('name', 'pingtai'))

df1 = pd.DataFrame([[1,2,3,4],[5,6,7,8],[11,22,33,44],[55,66,77,88]],index=index)
df2 = pd.DataFrame([[1,2,3,4]],columns=index)
# 自己输出验证把

  4、pd.MultiIndex.from_frame:

  传入1个df,根据df数据框(注意不是索引)作为多重索引创建df

# ‐*‐ coding: utf‐8 ‐*‐
import pandas as pd

tuples = [['baidu', 'sogou'], ['pc', 'wap']]
index=  pd.MultiIndex.from_product(tuples, names=('name', 'pingtai'))

df2 = pd.DataFrame([[1,2,3,4],[5,6,7,8],[11,22,33,44],[55,66,77,88]],index=index)
print(df2)
print('------------------')
# 自己输出验证把
index = pd.MultiIndex.from_frame(df2)
print(index)
                0   1   2   3
name  pingtai                
baidu pc        1   2   3   4
      wap       5   6   7   8
sogou pc       11  22  33  44
      wap      55  66  77  88
------------------
MultiIndex([( 1,  2,  3,  4),
            ( 5,  6,  7,  8),
            (11, 22, 33, 44),
            (55, 66, 77, 88)],
           names=[0, 1, 2, 3])

  5、groupby():

  通过分组统计得到多重索引,groupby函数默认as_index=True,即把分组的列作为索引

# ‐*‐ coding: utf‐8 ‐*‐
import pandas as pd

df = pd.DataFrame({'name': ['baidu', 'baidu','sogou', 'sogou'],
					'pingtai':['pc','wap','pc','wap'],
                   'value': [100., 200., 50., 80.]}
                   )
df_res = df.groupby(['name','pingtai']).sum()
print(df_res)
print('----------------')
print(df_res.index)
               value
name  pingtai       
baidu pc       100.0
      wap      200.0
sogou pc        50.0
      wap       80.0
----------------
MultiIndex([('baidu',  'pc'),
            ('baidu', 'wap'),
            ('sogou',  'pc'),
            ('sogou', 'wap')],
           names=['name', 'pingtai'])

  6、pivot_table():

  pivot_table函数生成透视表(其实也是分组聚合)

# ‐*‐ coding: utf‐8 ‐*‐
import pandas as pd
import numpy as np  


df = pd.DataFrame({"A": ["baidu", "baidu", "baidu", "baidu", "baidu",
                         "google", "google", "google", "google"],
                   "B": ["pc", "pc", "pc", "wap", "wap",
                         "pc", "pc", "wap", "wap"],
                   "C": [1, 2, 2, 3, 3, 4, 5, 6, 7],
                   "D": [2, 4, 5, 5, 6, 6, 8, 9, 9]})
table = pd.pivot_table(df, values='D', index=['A', 'B'],aggfunc=np.sum)
print(table)
print('----------------')
print(table.index)
             D
A      B      
baidu  pc   11
       wap  11
google pc   14
       wap  18
----------------
MultiIndex([( 'baidu',  'pc'),
            ( 'baidu', 'wap'),
            ('google',  'pc'),
            ('google', 'wap')],
           names=['A', 'B'])

  7、读取excel文件

  读取excel文件,通过inde_col或者header参数设置多重索引

# ‐*‐ coding: utf‐8 ‐*‐
import pandas as pd
import numpy as np  

# 第1和2列设为行索引
pd.read_excel(file_excel,index_col=[0,1]) 
# 第1和2行设为列索引
pd.read_excel(file_excel,header=[0,1])

  本文就此结束,感谢IT人士的关注pandas创建多重索引的7种方法,本文合作企业直达:更多推荐

很赞哦!

python编程网提示:转载请注明来源www.python66.com。
有宝贵意见可添加站长微信(底部),获取技术资料请到公众号(底部)。同行交流请加群 python学习会

文章评论

    pandas创建多重索引的7种方法文章写得不错,值得赞赏

站点信息

  • 网站程序:Laravel
  • 客服微信:a772483200